Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Maria Gdaniec

Faculty of Chemistry, Adam Mickiewicz
University, 60-780 Poznań, Poland
Correspondence e-mail: magdan@amu.edu.pl

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.035$
$w R$ factor $=0.090$
Data-to-parameter ratio $=11.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

2,3,4,5,6-Pentafluorobenzamide

The dihedral angle between the amide group and the pentafluorophenyl moiety of the title compound, $\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{~F}_{5} \mathrm{ON}$, is $43.56(5)^{\circ}$. The molecules are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds into an infinite, two-dimensional network generated by the cyclic $R_{2}^{2}(8)$ and chain $C(4)$ motifs.

Comment

A common pattern of assembly of primary amides is via centrosymmetric, cyclic $R_{2}^{2}(8)$ hydrogen-bond motif involving the syn-oriented NH_{s} groups, and via the $C(4)$ motif with the use of anti-oriented NH_{a} groups. Two situations may arise depending on the symmetry operation relating the amide molecules within the $C(4)$ chain. When amide cyclic dimers are related by ca $5.1 \AA$ translation, a one-dimensional assembly of hydrogen-bonded molecules is generated. In turn, the glide plane or 2_{1} symmetry operating between the dimers leads to a two-dimensional molecular network (Leiserowitz \& Hagler, 1983; Bernstein et al., 1994). The former assembly mode is generally preferred over the latter and is found, for example, in benzamide (Blake \& Small, 1972) and in its 2- and 3-fluoro derivatives (Taniguchi et al., 1975; Kato \& Sakurai, 1982), while molecules of 4-fluorobenzamide are hydrogenbonded to form the two-dimensional network (Kubota \& Ohba, 1992). On the other hand, 4-chlorobenzamide, which crystallizes in three polymorphic forms, can create both types of assemblies (Taniguchi et al., 1978; Hayashi et al., 1980). Whereas the crystal structure of 2,3,4,5,6-pentafluorobenzoic acid has been known for over 30 years (Benghiat \& Leiserowitz, 1972), the structure of its amide analogue, (I), has not been reported so far.

(1)

The structure of (I), with the atom-numbering scheme, is shown in Fig. 1. The molecule of (I) is not planar and its amide group is $\mathrm{ca} 15^{\circ}$ more twisted relative to the aromatic ring than in the benzamide structure (Blake \& Small, 1972). The largest difference in the geometry of the two amide molecules occurs in the value of the endocyclic bond angle at C 1 , which is $120.1(3)^{\circ}$ in benzamide and only $116.59(13)^{\circ}$ in its fluoro analogue. Similar changes have been observed in the geometries of benzoic (Bruno \& Randaccio, 1980) and pentafluorobenzoic acids (Benghiat \& Leiserowitz, 1972)

Received 15 September 2003
Accepted 1 October 2003
Online 7 October 2003

The hydrogen-bonding geometry is given in Table 2. In contrast to benzamide, the molecules of (I) are assembled in the crystal structure into a two-dimensional hydrogen-bonded network parallel to the (001) plane (Fig. 2). The amide NH_{a} groups take part in hydrogen bonds joining glide-planerelated centrosymmetric $R_{2}^{2}(8)$ dimers. Each molecule gives rise to five short intermolecular F..F contacts in the range 2.8117 (13)-2.8605 (13) A. No significant intermolecular $\pi-\pi$ stacking interactions are found between the perfluorophenyl rings; however, there are two short F. . C contacts of 2.927 (2) and 3.016 (2) \AA. They occur between the meta-fluoro group F5 and the benzene C 3 and carbonyl C 7 atoms of molecules related by a unit translation along b. As has been shown recently, the $\mathrm{C}-\mathrm{F} \cdots \mathrm{O}=\mathrm{C}$ interactions are robust in fluorinecontaining organic carbonyl compounds. They are best described as multipolar interactions between the intrinsically polar $\mathrm{C}-\mathrm{F}$ and $\mathrm{C}=\mathrm{O}$ groups (Olsen et al., 2003).

Experimental

Commercially available 2,3,4,5,6-pentafluorobenzamide was recrystallized by slow evaporation of an ethanol solution.

Figure 1
View of the molecule of (I), shown with 50% probability displacement ellipsoids.

Figure 2

Packing diagram for (I), viewed along the b axis. Hydrogen bonds and short F \cdots F contacts are shown by dashed lines.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{2} \mathrm{~F}_{5} \mathrm{NO}$

$M_{r}=211.10$
Monoclinic, $P 2_{1} / c$
$a=12.7305$ (11) A
$b=6.1929$ (6) A
$c=9.5856(10) \AA$
$\beta=100.073$ (8) ${ }^{\circ}$
$V=744.07(12) \AA^{3}$
$Z=4$
$D_{x}=1.884 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2021 reflections
$\theta=4-25^{\circ}$
$\mu=0.21 \mathrm{~mm}^{-1}$
$T=120$ (2) K
Prism, colorless

Data collection
Kuma KM-4 CCD diffractometer
$R_{\text {int }}=0.016$
ω scans
4010 measured reflections
$\theta_{\text {max }}=26.4^{\circ}$
$h=-15 \rightarrow 15$
1517 independent reflections
$k=-7 \rightarrow 7$
1376 reflections with $I>2 \sigma(I)$
$l=-11 \rightarrow 5$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.090$
$S=1.13$
1517 reflections
135 parameters
All H -atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.048 P)^{2}\right. \\
& +0.2307 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.27 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.2392(17)$	$\mathrm{C} 1-\mathrm{C} 7$	$1.513(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.3217(19)$		
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$116.59(13)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$119.08(13)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$123.90(14)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$117.02(12)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$44.8(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$41.2(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	$0.88(2)$	$2.05(2)$	$2.8902(17)$	$158.3(17)$
$\mathrm{N} 1-\mathrm{H} 2 \cdots \mathrm{O}^{1 i}$	$0.89(2)$	$2.03(2)$	$2.9137(17)$	$175.5(16)$

Symmetry codes: (i) $x, \frac{3}{2}-y, z-\frac{1}{2}$; (ii) $-x, 2-y,-z$.
Data collection: CrysAlisCCD (Oxford Diffraction, 2000); cell refinement: CrysAlisCCD; data reduction: CrysAlisRED (Oxford Diffraction, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens, 1989); software used to prepare material for publication: SHELXL97.

References

Benghiat, V. \& Leiserowitz, L. (1972). J. Chem. Soc. Perkin Trans. 2, pp. 17781785.

Bernstein, J., Etter, M. C. \& Leiserowitz, L. (1994). Structure Correlation, edited by H.-B. Bürgi \& J. D. Dunitz, Vol. 2, pp. 431-507. New York: VCH.
Blake, C. C. F. \& Small, R. W. H. (1972). Acta Cryst. B28, 2201-2206.
Bruno, G. \& Randaccio, L. (1980). Acta Cryst. B36, 1711-1712.
Hayashi, T., Nakata, K., Takaki, Y. \& Sakurai, K. (1980). Bull. Chem. Soc. Jpn, 53, 801-802.
Kato, Y. \& Sakurai, K. (1982). Bull. Chem. Soc. Jpn, 55, 1643-1644.

organic papers

Kubota, M. \& Ohba, S. (1992). Acta Cryst. B48, 849-854.
Leiserowitz, L. \& Hagler, A. T. (1983). Proc. R. Soc. London Ser. A, 388, 133175.

Olsen, J. A., Banner, D. W., Seiler, P., Obst-Sander, U., D'Arcy, A., Stihle, M., Müller, K. \& Diederich, F. (2003). Angew. Chem. Int. Ed. 42, 25072511.

Oxford Diffraction (2000). CrysAlis Software (CCD and RED). Version 1.163. Oxford Diffraction, Abingdon, Oxfordshire, England.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1989). Stereochemical Workstation Operation Manual. Release 3.4. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Taniguchi, T., Nakata, K., Takaki, Y. \& Sakurai, K. (1978). Acta Cryst. B34, 2574-2578.
Taniguchi, T., Takaki, Y. \& Sakurai, K. (1975). Mem. Osaka Kyoiku Univ. Ser. III, 24, 119.

